F = T ∇ Sτ Is there an equation for intelligence?

Is there an equation for intelligence? Yes. It's F = T ∇ Sτ. In a fascinating and informative talk, physicist and computer scientist Alex Wissner-Gross explains what in the world that means.

Intelligence -- what is it? If we take a look back at the history of how intelligence has been viewed, one seminal example has been Edsger Dijkstra's famous quote that "the question of whether a machine can think is about as interesting as the question of whether a submarine can swim." Now, Edsger Dijkstra, when he wrote this, intended it as a criticism of the early pioneers of computer science, like Alan Turing. However, if you take a look back and think about what have been the most empowering innovations that enabled us to build artificial machines that swim and artificial machines that [fly], you find that it was only through understanding the underlying physical mechanisms of swimming and flight that we were able to build these machines. And so, several years ago, I undertook a program to try to understand the fundamental physical mechanisms underlying intelligence.

Alex Wissner-Gross: A new equation for intelligence

And the answer, I believe, is yes. ["F = T ∇ Sτ"] What you're seeing is probably the closest equivalent to an E = mc²for intelligence that I've seen. So what you're seeing here is a statement of correspondence that intelligence is a force, F, that acts so as to maximize future freedom of action. It acts to maximize future freedom of action, or keep options open, with some strength T, with the diversity of possible accessible futures, S, up to some future time horizon, tau. In short, intelligence doesn't like to get trapped. Intelligence tries to maximize future freedom of actionand keep options open. And so, given this one equation, it's natural to ask, so what can you do with this? How predictive is it? Does it predict human-level intelligence? Does it predict artificial intelligence? So I'm going to show you now a video that will, I think, demonstrate some of the amazing applications of just this single equation.



No comments:

Post a Comment